JCM Accepted Manuscript Posted Online 15 March 2017 J. Clin. Microbiol. doi:10.1128/JCM.00358-17 Copyright © 2017 American Society for Microbiology. All Rights Reserved.

> Real-time sequencing of TB: are we there yet? Commissioned manuscript with tracking number JCM00358-17

- 1 Real-time sequencing of *Mycobacterium tuberculosis:* are we there yet?
- 2
- 3 Robyn S. Lee,^{a,b} Madhukar Pai^{c,d,e#}
- 4
- 5 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and
- 6 Immunity, The University of Melbourne, Melbourne, Victoria, Australia^a; Microbiological
- 7 Diagnostic Unit Public Health Laboratory, The University of Melbourne, Melbourne,
- 8 Victoria, Australia^b; McGill International TB Centre, Montreal, Québec, Canada^c; McGill
- 9 Global Health Programs, McGill University, Montreal, Québec, Canada^d; Department of
- 10 Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Québec,
- 11 Canada^e
- 12
- 13 Running head: Real-time sequencing of TB: are we there yet?
- 14
- 15 [#]Address correspondence to Prof. Madhukar Pai, MD PhD, madhukar.pai@mcgill.ca
- 16 Word count: Abstract 103, text 2671

17 Abstract

- 18 Whole genome sequencing has taken a leading role in epidemiologic studies of tuberculosis,
- 19 but thus far, the real-time, clinical utility has been low, in part due to the requirement for
- 20 culture. In Votintseva et al. (J Clin Microbiol https://doi.org/10.1128/JCM.02483-16),
- 21 authors present a new method for extracting Mycobacterium tuberculosis DNA directly from
- 22 smear-positive respiratory samples, generating drug resistance predictions and phylogenetic
- trees in 44 hours using the Illumina MiSeq. Authors also illustrate the potential for < 24 hour
- 24 turnaround time from DNA extraction to clinically-relevant results, with Illumina MiniSeq
- 25 and Oxford Nanopore Technologies' MinION. We comment on the promise and limitations
- 26 of these approaches.
- 27
- 28

29	Whole genome sequencing (WGS) is becoming a mainstay in epidemiologic studies of
30	tuberculosis (TB), with numerous studies demonstrating increased resolution of transmission
31	compared to classical molecular typing methods (reviewed in (1)). While accurately
32	resolving transmission networks is important for public health, it should be noted that
33	countries with the greatest burden of TB often lack resources to conduct such epidemiologic
34	investigations. In such high-incidence, resource-limited settings, diagnosis and treatment
35	remain the greatest priority for TB control. A role for WGS in clinical management of TB has
36	been recently discussed in (2, 3); as comparably inexpensive and rapid tests already available
37	for detection of Mycobacterium tuberculosis, the application to drug resistance prediction is
38	where WGS may ultimately have the greatest impact. We have therefore focused this
39	commentary on this facet of care.
40	
41	Inadequate access to drug susceptibility testing (DST), and long delays in reporting of drug
41 42	Inadequate access to drug susceptibility testing (DST), and long delays in reporting of drug resistance pose serious challenges to TB control. Phenotypic DST is currently the "gold
41 42 43	Inadequate access to drug susceptibility testing (DST), and long delays in reporting of drug resistance pose serious challenges to TB control. Phenotypic DST is currently the "gold standard" for determining resistance to antibiotics, but can take weeks to months for results
41 42 43 44	Inadequate access to drug susceptibility testing (DST), and long delays in reporting of drug resistance pose serious challenges to TB control. Phenotypic DST is currently the "gold standard" for determining resistance to antibiotics, but can take weeks to months for results as specimens must be sent to centralized laboratories for culture. Given these delays, rapid
41 42 43 44 45	Inadequate access to drug susceptibility testing (DST), and long delays in reporting of drug resistance pose serious challenges to TB control. Phenotypic DST is currently the "gold standard" for determining resistance to antibiotics, but can take weeks to months for results as specimens must be sent to centralized laboratories for culture. Given these delays, rapid molecular tests such as Xpert MTB/RIF (Cepheid Inc., Sunnyvale, California, USA) and line
41 42 43 44 45 46	Inadequate access to drug susceptibility testing (DST), and long delays in reporting of drug resistance pose serious challenges to TB control. Phenotypic DST is currently the "gold standard" for determining resistance to antibiotics, but can take weeks to months for results as specimens must be sent to centralized laboratories for culture. Given these delays, rapid molecular tests such as Xpert MTB/RIF (Cepheid Inc., Sunnyvale, California, USA) and line probe assays (LPAs) have been endorsed by the World Health Organization, to complement
41 42 43 44 45 46 47	Inadequate access to drug susceptibility testing (DST), and long delays in reporting of drug resistance pose serious challenges to TB control. Phenotypic DST is currently the "gold standard" for determining resistance to antibiotics, but can take weeks to months for results as specimens must be sent to centralized laboratories for culture. Given these delays, rapid molecular tests such as Xpert MTB/RIF (Cepheid Inc., Sunnyvale, California, USA) and line probe assays (LPAs) have been endorsed by the World Health Organization, to complement culture-based DST. Although Xpert MTB/RIF and LPAs have enhanced early identification
41 42 43 44 45 46 47 48	Inadequate access to drug susceptibility testing (DST), and long delays in reporting of drug resistance pose serious challenges to TB control. Phenotypic DST is currently the "gold standard" for determining resistance to antibiotics, but can take weeks to months for results as specimens must be sent to centralized laboratories for culture. Given these delays, rapid molecular tests such as Xpert MTB/RIF (Cepheid Inc., Sunnyvale, California, USA) and line probe assays (LPAs) have been endorsed by the World Health Organization, to complement culture-based DST. Although Xpert MTB/RIF and LPAs have enhanced early identification of drug resistance, these tests can miss resistance-conferring mutations that are outside of the
41 42 43 44 45 46 47 48 49	Inadequate access to drug susceptibility testing (DST), and long delays in reporting of drug resistance pose serious challenges to TB control. Phenotypic DST is currently the "gold standard" for determining resistance to antibiotics, but can take weeks to months for results as specimens must be sent to centralized laboratories for culture. Given these delays, rapid molecular tests such as Xpert MTB/RIF (Cepheid Inc., Sunnyvale, California, USA) and line probe assays (LPAs) have been endorsed by the World Health Organization, to complement culture-based DST. Although Xpert MTB/RIF and LPAs have enhanced early identification of drug resistance, these tests can miss resistance-conferring mutations that are outside of the locus of interest (e.g., the <i>rpoB</i> I491F mutation found to cause rifampin resistance is not
41 42 43 44 45 46 47 48 49 50	Inadequate access to drug susceptibility testing (DST), and long delays in reporting of drug resistance pose serious challenges to TB control. Phenotypic DST is currently the "gold standard" for determining resistance to antibiotics, but can take weeks to months for results as specimens must be sent to centralized laboratories for culture. Given these delays, rapid molecular tests such as Xpert MTB/RIF (Cepheid Inc., Sunnyvale, California, USA) and line probe assays (LPAs) have been endorsed by the World Health Organization, to complement culture-based DST. Although Xpert MTB/RIF and LPAs have enhanced early identification of drug resistance, these tests can miss resistance-conferring mutations that are outside of the locus of interest (e.g., the <i>rpoB</i> I491F mutation found to cause rifampin resistance is not detected by Xpert MTB/RIF (4)). They are also unable to differentiate between non-
41 42 43 44 45 46 47 48 49 50 51	Inadequate access to drug susceptibility testing (DST), and long delays in reporting of drug resistance pose serious challenges to TB control. Phenotypic DST is currently the "gold standard" for determining resistance to antibiotics, but can take weeks to months for results as specimens must be sent to centralized laboratories for culture. Given these delays, rapid molecular tests such as Xpert MTB/RIF (Cepheid Inc., Sunnyvale, California, USA) and line probe assays (LPAs) have been endorsed by the World Health Organization, to complement culture-based DST. Although Xpert MTB/RIF and LPAs have enhanced early identification of drug resistance, these tests can miss resistance-conferring mutations that are outside of the locus of interest (e.g., the <i>rpoB</i> 1491F mutation found to cause rifampin resistance is not detected by Xpert MTB/RIF (4)). They are also unable to differentiate between non-synonymous mutations and synonymous mutations (5), the latter of which are not thought to

53

	Real-time sequencing of TB: are we there yet? Commissioned manuscript with tracking number JCM00358-17
54	In contrast to these targeted, rapid molecular tests, WGS can theoretically identify all
55	mutations in genes associated with resistance at once, and predict the functional effect of
56	these mutations, i.e, whether or not they would likely cause antibiotic resistance. Numerous
57	mutations in the <i>pncA</i> gene and inconsistent, unreliable DST (6) suggest that WGS is the best
58	approach for diagnosing resistance to the drug pyrazinamide. This drug is not only a
59	cornerstone of first-line regimens, but also is critical to novel drug combinations (e.g.,
60	"BPaZM": bedaquiline, pretomadid, pyrazinamide and moxifloxacin) in late phase trials (7).
61	In addition, WGS offers the potential to detect novel drug mutations; this is of particular
62	interest as new antimicrobials become available and are included in treatment regimens for
63	multi-drug resistant TB (MDR-TB) (7). Using WGS, several resistance-connoting mutations
64	have already been identified for bedaquiline and delamanid (8). With the potential to
65	diagnose and predict drug resistance (as well as delineate transmission networks for public
66	health) all in a single 'test', WGS therefore has the potential to revolutionize TB control
67	programs. To do so, several obstacles must first be overcome in terms of speed (i.e., reducing
68	the turnaround time (TAT) to results), accuracy of predicting phenotypic resistance, and
69	resources requirements.
70	
71	First, to have the greatest clinical utility, and meet the needs outlined by key stakeholders in
72	the TB community (9), TAT needs to be fast – ideally, with results available the same day as
73	testing. Due to several technical difficulties with performing WGS on clinical samples

74 (reviewed in (10)), thus far, WGS has been predominantly been conducted on M. tuberculosis 75 DNA extracted from culture. Using this approach, a head-to-head comparison (11) between 76 WGS and conventional DST found no difference in TAT when real-life delays (as would be 77 experienced in clinical practice) were considered; median TAT from positive Mycobacterial 78 Growth Indicator Tube (MGIT) to WGS-based resistance reports was 31 days (IQR 21-60),

Journal of Clinica

while median time from positive MGIT to DST report was 25 days for conventional DST
(interquartile range 14-32). To reduce losses to follow-up, and potentially have an immediate
impact on patient care, WGS would ideally be applied directly to clinical samples, as is done
with Xpert MTB/RIF.

83

84 Thus far, only two studies have been published attempting WGS on such samples (12, 13), 85 with variable success. In a proof-of-concept study published in 2015, Doughty et al. extracted 86 M. tuberculosis DNA directly from clinical samples and sequenced this using Illumina MiSeq 87 (Illumina, San Diego, USA); however, while TB could be diagnosed, the *M. tuberculosis* 88 DNA obtained was insufficient for drug resistance prediction due to contamination with 89 human DNA (12). A second study published the same year by Brown et al. (13) performed 90 targeted enrichment using oligonucleotide baits to capture M. tuberculosis DNA prior to 91 sequencing with Illumina MiSeq; this approach yielded $\geq 20x$ depth of coverage (the average 92 number of sequencing 'reads' that map to a given position in the reference genome) and 93 >98% genome coverage (the percent of the reference genome with at least one read mapped 94 to it) for 20/24 smear-positive, culture-positive samples (83%). These quality control 95 parameters are in line with early studies that performed WGS on DNA extracted from 96 culture, and were sufficient for speciation and drug resistance prediction. However, this 97 method was expensive and had technical requirements potentially beyond the capacity of 98 most microbiology laboratories. 99 100 In this issue of the Journal of Clinical Microbiology, Votintseva et al. (14) present a new

approach for extracting *M. tuberculosis* DNA from direct respiratory specimens, without
enrichment. Compared to (13), this method was faster (TAT including MiSeq sequencing
was estimated at 50h for Brown *et al.*, 44h for Votintseva *et al.*) and less expensive (203 vs

104 96 Great Britain Pounds per sample for reagents, extraction and sequencing, respectively). 105 All direct samples were correctly identified as Mycobacterium tuberculosis complex (95% 106 speciated as *M. tuberculosis*). Overall quality control metrics were lower compared to (13), 107 with depth of coverage >12x and \geq 90% genome coverage for only 21/37 (57%) of the smear-108 positive, culture-positive samples. As direct samples were partitioned for routine clinical use 109 prior to analysis, it is possible this influenced the quantity of *M. tuberculosis* DNA available; 110 however, sample volume was not associated with yield of DNA in univariate and multivariate 111 models. 112 113 In addition to the Illumina MiSeq, the authors also tested and timed two other sequencing 114 technologies: the Illumina MiniSeq and the Oxford Nanopore MinION (Oxford Nanopore 115 Technologies, Oxford, UK). For these platforms, DNA was extracted from cultured 116 Mycobacterium bovis BCG strain using a previously-reported protocol (15). Pure BCG was 117 then sequenced as well as BCG DNA that was experimentally spiked at specified 118 concentrations (ranging from 5%-15%) into smear-negative, culture-negative sputum. A PCR 119 amplification step, using a new protocol developed by the authors, was performed prior to 120 sequencing with the MinION. The TAT from DNA extraction to complete resistance 121 prediction (and phylogenetic placement) was 16h for MiniSeq, while TAT to these results for 122 a single sample of *M. bovis* BCG DNA spiked at 15% concentration was estimated at 12.5h 123 with the MinION 9.4 flowcell (actual sequencing was performed over 48 hours in total). An

124 advantage of the MinION is that data can be analyzed in real-time; *M. bovis* BCG DNA was

125 detected and correctly identified at 1h, while sequencing was still ongoing. Somewhat

126 disappointingly, authors did not test their novel extraction protocol for direct sequencing of

127 *M. tuberculosis* in combination with either the MiniSeq or MinION. While authors estimate

128 potential TAT for *M. tuberculosis* with the MinION R9.4 flowcell based on the single *M*.

129	bovis BCG run, to properly assess the performance of the direct sample DNA extraction
130	protocol in combination with this technology, future studies are needed that use real (rather
131	than experimentally-generated) respiratory samples, obtained from patients positive for M.
132	tuberculosis. Nonetheless, this study serves as a valuable proof of concept, demonstrating the
133	potential for WGS as a same-day test.
134	
135	In addition to TAT, accuracy of WGS-based prediction is also a current barrier to
136	implementation; to be financially feasible for most TB control programmes, WGS would
137	optimally serve as a replacement test - eliminating the need for culture altogether. To do so,
138	we need sufficient WGS quality to accurately identify ('call') single nucleotide
139	polymorphisms (SNP; a single change in a base-pair, compared to a reference). The
140	frequency and type of sequencing errors vary across platforms, due to differences in the
141	underlying sequencing chemistry (e.g., Illumina MiSeq has an error rate of 0.8%, PacBio RS
142	12.9%, MinION 5-30%; Dr. David Dolinger, Foundation for Innovative New Diagnostics,
143	personal communication). Such errors must be accounted for in the analysis, with only high-
144	quality base calls retained. In the case of the MinION, which Votintseva et al. applied - for
145	the first time ever reported - to Mycobacterium (14), authors identified a systematic $A \rightarrow G$
146	error bias in 1D reads, which must be accounted for in the bioinformatics analysis.
147	
148	In addition to such platform-specific considerations, overall quality control parameters such
149	as depth of coverage and genome coverage also matter when assessing sequencing results.
150	For such parameters, the minimum thresholds necessary for clinical use still need to be
151	determined. With lower depth of coverage (and/or lower genome coverage), resistance-
152	connoting mutations are more likely to be missed. Using lower thresholds for depth may also
153	reduce our power to detect populations with mixed resistance profiles, or rule out false

154	positive SNPs due to sequencing or mapping errors. Previous studies performing WGS on
155	DNA from cultured <i>M. tuberculosis</i> have required a minimum of 8 to 20x depth of coverage
156	at the specific locus of interest to confidently call a SNP (with a minimum average of 40-50x
157	across the genome currently recommended). Given the technical difficulty of sequencing
158	from direct samples, these thresholds may not be feasible for this approach. In Votintseva et
159	al. (14), authors required > $3x$ depth to allow resistance predictions to be made, a threshold
160	only met by 24/37 (65%) of the direct samples of <i>M. tuberculosis</i> sequenced by Illumina
161	MiSeq. Of the 96 possible predictions made for first-line drugs, 92 were concordant with
162	phenotypic DST (96%); the 4 discordant predictions (for rifampin and pyrazinamide) were
163	made on samples from a single patient, which had varying phenotypes for these drugs. When
164	experimentally-spiked M. bovis DNA was sequenced using the MinION, the expected H57D
165	pncA mutation was confidently called for all but the lowest concentration of BCG DNA
166	(5%). However, while this resistance mutation was correctly classified using a 3x threshold,
167	it is important to note that deeper sequencing was required to confidently exclude SNPs at
168	174 other loci known to be associated with resistance. Given the consequences of both false
169	positive and false negative resistance calls, before WGS can be implemented into the
170	diagnostic workflow, quality control thresholds used must therefore undergo thorough
171	validation, and ideally, be standardized for reproducible clinical use (16, 17).
172	
173	In addition to being influenced by WGS data quality, our ability to accurately predict
174	phenotypic resistance is also currently limited by our knowledge of resistance-connoting
175	mutations. The potential for interaction between different mutations, both compensatory and
176	resistance-connoting, as well as strain genetic background (i.e., lineage) (18), further
177	complicates this understanding. While several databases have curated mutations from the
178	literature (e.g., TBDReaMDB (19), TBDR (16)), it is difficult to evaluate causality of such

179

180 the isolate level. Studies using WGS to predict drug resistance ((20-22)) have shown that 181 sensitivity and specificity of this approach varies substantially by drug, with accuracy lowest 182 for second-line anti-TB drugs. As phenotypic DST for second-line drugs is typically only 183 performed if first-line resistance is detected, the numbers of isolates with both genotypic and 184 phenotypic data for these drugs is small. To improve our knowledge of genotypic-phenotypic 185 concordance, large WGS databases with corresponding DST are therefore needed, 186 incorporating both drug-sensitive and drug-resistant isolates (16). In response to this, several 187 multi-national programs have been initiated (e.g., the CRyPTIC Project at 188 http://modmedmicro.nsms.ox.ac.uk/cryptic/ and ReSeqTB (23) at 189 https://platform.reseqtb.org). These programs are facilitating the collection and curation of 190 WGS data with corresponding phenotypic DST, as well as critical clinical outcome data, 191 from both public and private sectors, which will enhance our understanding of causal 192 resistance-connoting mutations. Until such time, if WGS is used to predict resistance, 193 phenotypic DST should be performed in parallel - a prospect that is likely cost-prohibitive for 194 most TB control programs. 195 196 In addition to issues with speed and accuracy, the substantial resources required for WGS are 197 other obstacles to implementation. A large capital investment is necessary to establish the 198 infrastructure for WGS, which may be particularly difficult for developing countries. 199 Sequencing platforms themselves are expensive; as of January 2017, "desktop sequencers" 200 Illumina MiniSeq and MiniSeq cost approximately \$50,000 USD and \$100,000 USD, 201 respectively (excluding consumables). Platforms with even higher throughput such as the 202 PacBio RS P6-C4 (Pacific Biosciences, Menlo Park, California, USA) or Illumina HiSeq X 203 cost \$675,000 USD and \$1 million USD, respectively (Dr. David Dolinger, Foundation for

mutations, and assess for potential interactions absent complete WGS and phenotypic data at

204	Innovative New Diagnostics, Geneva, personal communication). Aside from the platforms
205	themselves, laboratories must also have allocated space, continuous, uninterrupted power
206	supplies and highly trained personnel to calibrate, operate and support these platforms (24,
207	25). Oxford Nanopore Technology's MinION, recently used to sequence Ebola strains in
208	Guinea (24), has been proposed as a potential solution to some of these implementation
209	issues. Cost-wise, the Oxford Nanopore MinION platform itself is only \$1,000 (price as of
210	February 3 rd , 2017, https://store.nanoporetech.com/minion/sets/, including 2 flowcells and a
211	starter kit of reagents). However, a maximum of 12 samples can be sequenced at once using
212	the MinION 9.4 flowcell, and, as they are not reusable, a new flowcell must be used for each
213	additional use (at a cost of ~\$10 USD a piece, when purchased in bulk). In terms of
214	laboratory requirements, the MinION is more easily transportable and requires less lab space
215	(24, 25), but still requires human intervention for sample preparation. Thus, regardless of the
216	next-generation sequencing platform used, most of the required resources are currently only
217	be available in a reference laboratory setting, prohibiting the decentralization of WGS for TB
218	diagnostics (26).
219	
220	In addition to these infrastructure requirements, the bioinformatics analysis of WGS data has
221	been a major bottleneck in the widespread use of this method. Recently, substantial advances
222	in this area have been made, with the development of rapid, user-friendly tools, such as
223	PhyResSE (27), TBProfiler (22), TGS-TB (28) (which uses KvarQ (29)) and Mykrobe
224	Predictor (20), to facilitate resistance prediction. These tools can take raw sequencing files
225	from cultured <i>M. tuberculosis</i> DNA all the way through to resistance profiles (though one
226	needs some understanding of bioinformatics concepts for interpretation). Additionally, both

- 227 Mykrobe and KvarQ can be run offline, though, to our knowledge, Mykrobe is the only rapid
 - 228 resistance tool compatible with the readily-transportable MinION; this is ideal for use in

229	regions with limited internet access (though periodic updates to include novel resistance-
230	connoting mutations from the literature would be needed). To utilize these tools with the
231	direct sequencing protocol proposed in (14), human DNA must be removed a priori; as this
232	involved mapping to a human reference genome, future software iterations will need to
233	automate this step for easier use by frontline technicians without bioinformatics expertise.
234	
235	In conclusion, WGS has the potential to become the future of TB DST (30) - provided these
236	key considerations in terms of speed, accuracy and resource requirements are addressed.
237	Studies like (14) provide essential methodological advances and proof-of-concept needed to
238	help move WGS to the clinical arena, and ultimately make real-time sequencing of M.
239	tuberculosis a reality. To fully evaluate the different DNA extraction protocols for direct
240	sequencing, in combination with different sequencing platforms, future studies are needed
241	employing these methods on the same samples, in a head-to-head comparison. Additional
242	studies are also needed to validate bioinformatics thresholds for clinical use, and assess the
243	performance of direct sequencing on different specimen types (e.g., smear-negative, culture-
244	positive samples, and non-respiratory samples). Given that countries with the highest burden
245	of TB are those with more limited resources, lower-cost, decentralized, simpler platforms are
246	essential for any meaningful scale-up.
247	
248	Acknowledgements. Authors would like to thank Dr. Marcel A. Behr, McGill University, for
249	his critical review of this manuscript, and Dr. David Dolinger from the Foundation for New
250	Innovative Diagnostics (FIND) for providing current costing data for next-generation
251	sequencing platforms, and discussing issues in comparing these technologies. This research
252	received no specific grant from any funding agency in the public, commercial, or not-for-
253	profit sectors.

254 References

255	1.	Nikolayevskyy V, Kranzer K, Niemann S, Drobniewski F. 2016. Whole genome
256		sequencing of Mycobacterium tuberculosis for detection of recent transmission and
257		tracing outbreaks: A systematic review. Tuberculosis (Edinb) 98:77-85.
258	2.	Takiff H, Feo O. 2015. Clinical value of whole-genome sequencing of
259		Mycobacterium tuberculosis. Lancet Infect Dis 15:1077-1090.
260	3.	Lee RS, Behr MA. 2016. The implications of whole-genome sequencing in the
261	-	control of tuberculosis. Ther Adv Infect Dis 3:47-62.
262	4.	Sanchez-Padilla EM, Merker M, Beckert P, Jochims F, Clamini T, Kahn P, Bonnet
263	••	M Niemann S 2015 Detection of drug-resistant tuberculosis by Xpert MTB/RIF in
263		Swaziland N Engl I Med 372.1181-82
265	5	Ocheretina O Escuver VE Mahou MM Royal-Mardi G Collins S Vilhrun SC Pane
265	5.	IW Fitzgerald DW 2014 Correlation between genotypic and phenotypic testing for
260		resistance to rifamnin in Mycobactarium tubarculasis clinical isolates in Haiti:
267		investigation of cases with discrement suscentibility results. PL oS One 9:e90569
200	6	Miotto P. Cabibbe AM. Feuerriegel S. Casali N. Drobniewski F. Rodionova V.
209	0.	Pakanyta D. Stakanas P. Dimking F. Augustynowiaz Kanas F. Dagana M. Ambrosi
270		A Hoffner S Mangio M Worngron I Busch Gordos S Niemann S Cirillo DM
271		A, fiormer S, iviansjo W, weingrein J, Rusen-Oerdes S, Niemann S, Chino DW.
272		2014. <i>Mycobacterium tuberculosis</i> pyfazinamide resistance determinants, a
273	7	multicenter study. MB10 5:e01819-14.
274	/.	Wells WA, Boenme CC, Cobelens FGJ, Daniels C, Dowdy D, Gardiner E, Gneuens J, Kim D, Kimedine ME, Kusiemisth D, Linghanth C, Milleli K, Dei M, Dechine MD
275		Kim P, Kimerling ME, Kreiswirth B, Liennardt C, Moluli K, Pal M, Perkins MD,
276		Peter I, Zignol M, Zumia A, Schito M. 2013. Alignment of new tuberculosis drug
277		regimens and drug susceptibility testing: a framework for action. Lancet Infect Dis
278	0	
279	8.	Bloemberg G, Stucki D, Latshang T, Coscolla M, Rothe T, Homke R, Feldmann J,
280		Schulthess B, Gagneux S, Bottger EC. 2015. Acquired resistance to bedaquiline and
281	0	delaminid in therapy for tuberculosis. N Engl J Med 373:1986-1988.
282	9.	Denkinger CM, Dolinger D, Schito M, Wells W, Cobelens F, Pai M, Zignol M,
283		Cirillo DM, Alland D, Casenghi M, Gallarda J, Boehme CC, Perkins MD. 2015.
284		Target product profile of a molecular drug-susceptibility test for use in microscopy
285		centers. J Infect Dis 211 Suppl 2:S39-49.
286	10.	McNerney R, Clark TG, Campino S, Rodrigues C, Dolinger D, Smith L, Cabibbe
287		AM, Dheda K, Schito M. 2016. Removing the bottleneck in whole genome
288		sequencing of <i>Mycobacterium tuberculosis</i> for rapid drug resistance analysis: a call to
289		action. Int J Infect Dis doi:10.1016/j.ijid.2016.11.422.
290	11.	Pankhurst LJ, del Ojo Elias C, Votintseva AA, Walker TM, Cole K, Davies J,
291		Fermont JM, Gascoyne-Binzi DM, Kohl TA, Kong C, Lemaitre N, Niemann S, Paul
292		J, Rogers TR, Roycroft E, Smith EG, Supply P, Tang P, Wilcox MH, Wordsworth S,
293		Wyllie D, Xu L, Crook DW. 2016. Rapid, comprehensive, and affordable
294		mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet
295		Respir Med 4:49-58.
296	12.	Doughty EL, Sergeant MJ, Adetifa I, Antonio M, Pallen MJ. 2014. Culture-
297		independent detection and characterisation of Mycobacterium tuberculosis and M.
298		africanum in sputum samples using shotgun metagenomics on a benchtop sequencer.
299		PeerJ 2:e585.
300	13.	Brown AC, Bryant JM, Einer-Jensen K, Holdstock J, Houniet DT, Chan JZ, Depledge
301		DP, Nikolayevskyy V, Broda A, Stone MJ, Christiansen MT, Williams R, McAndrew
202		MB Tutill H Brown I Melzer M Rosmarin C McHugh TD Shorten RI

Real-time sequencing of TB: are we there yet?
Commissioned manuscript with tracking number JCM00358-17

 Mycobacterium tuberculosis isolates directly from clinical samples. J Clin Microbiol 53:2230-7. Votintseva AA, Bradley P, Pankhurst L, del Ojo Elias C, Loose M, Nilgiriwala K, Chatterjee A, Smith EG, Sanderson N, Walker TM, Morgan MR, Wyllie DH, Walker AS, Peto TEA, Crook DW, Iqbal Z. 2017. Same-day diagnostic and surveillance data for tuberculosis via whole genome sequencing of direct respiratory samples. J Clin Microbiol doi:https://doi.org/10.1128/JCM.02483-16. Votintseva AA, Pankhurst LJ, Anson LW, Morgan MR, Gascoyne-Binzi D, Walker TM, Quan TP, Wyllie DH, Del Ojo Elias C, Wilcox M, Walker AS, Peto TE, Crook DW. 2015. Mycobacterial DNA extraction for whole-genome sequencing from early positive liquid (MGIT) cultures. J Clin Microbiol 53:1137-43. Salamon H, Yamaguchi KD, Cirillo DM, Miotto P, Schito M, Posey J, Starks AM, Niemann S, Alland D, Hanna D, Aviles E, Perkins MD, Dolinger DL. 2015. Integration of published information into a resistance-associated mutation database for <i>Mycobacterium tuberculosis</i>. J Infect Dis 211 Suppl 2:S50-7. Endrullat C, Glokler J, Franke P, Frohme M. 2016. Standardization and quality management in next-generation sequencing. Appl Transl Genom 10:2-9. Muller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multiforuy-cresistant <i>Mycobacterium tuberculosis</i>. J Rev S, Hang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Pater TE, Cro KDW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Nichaus KE, Wilson DJ, Cliffon DA, Kapatai G, Ip CL, Bowden R, 2009 Tuberculosis drug resistance Pater TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphy</i>	303		Drobniewski F, Speight G, Breuer J. 2015. Rapid whole-genome Sequencing of
 305 53:2230-7. 14. Votintseva AA, Bradley P, Pankhurst L, del Ojo Elias C, Loose M, Nilgiriwala K, Chatterjee A, Smith EG, Sanderson N, Walker TM, Morgan MR, Wyllie DH, Walker AS, Peto TEA, Crook DW, Iqbal Z. 2017. Same-day diagnostic and surveillance data for tuberculosis via whole genome sequencing of direct respiratory samples. J Clin Microbiol doi:https://doi.org/10.1182/JCM.02483-16. 15. Votintseva AA, Pankhurst LJ, Anson LW, Morgan MR, Gascoyne-Binzi D, Walker TM, Quan TP, Wyllie DH, Del Ojo Elias C, Wilcox M, Walker AS, Peto TE, Crook DW. 2015. Mycobacterial DNA extraction for whole-genome sequencing from early positive liquid (MGIT) cultures. J Clin Microbiol 53:1137-43. 16. Salamon H, Yamaguchi KD, Cirillo DM, Miotto P, Schito M, Posey J, Starks AM, Niemann S, Alland D, Hanna D, Aviles E, Perkins MD, Dolinger DL. 2015. Integration of published information into a resistance-associated mutation database for <i>Mycobacterium tuberculosis</i>. J Infect Dis 211 Suppl 2:S0-7. 17. Endrullat C, Glokler J, Franke P, Frohme M. 2016. Standardization and quality management in next-generation sequencing. Appl Transl Genom 10:2-9. 18. Muller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multidrug-resistant <i>Mycobacterium tuberculosis</i>. Trends Genet 29:160-9. 2009. Tuberculosis drug resistance mutation database. PLoS Med 6:e2. 2019. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wjlte DH, Diel R, Niemann S, Feuerrigel S, Kohl TA, Ismail N, Nomar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staplococcus aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. 211. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Crook DW, Smith EG, Walker AS, Ismail N, Nieman	304		Mycobacterium tuberculosis isolates directly from clinical samples. J Clin Microbiol
 Votintseva AA, Bradley P, Pankhurst L, del Ojo Elias C, Loose M, Nilgiriwala K, Chatterjee A, Smith EG, Sanderson N, Walker TM, Morgan MR, Wyllie DH, Walker AS, Peto TEA, Crook DW, Iqbal Z. 2017. Same-ady diagnostic and surveillance data for tuberculosis via whole genome sequencing of direct respiratory samples. J Clin Microbiol doi:https://doi.org/10.1128/JCM.02483-16. Votintseva AA, Pankhurst LJ, Anson LW, Morgan MR, Gascoyne-Binzi D, Walker TM, Quan TP, Wyllie DH, Del Ojo Elias C, Wilcox M, Walker AS, Peto TE, Crook DW. 2015. Mycobacterial DNA extraction for whole-genome sequencing from early positive liquid (MGIT) cultures. J Clin Microbiol 53:1137-43. Salamon H, Yamaguchi KD, Cirillo DM, Miotto P, Schito M, Posey J, Starks AM, Niemann S, Alland D, Hanna D, Aviles E, Perkins MD, Dolinger DL. 2015. Integration of published information into a resistance-associated mutation database for <i>Mycobacterium tuberculosis</i>. J Infect Dis 211 Suppl 2:S50-7. Endrullat C, Glokler J, Franke P, Frohme M. 2016. Standardization and quality management in next-generation sequencing. Appl Transl Genom 10:2-9. Muller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multidrug-resistant <i>Mycobacterium tuberculosis</i>. Trends Genet 29:160-9. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB. 2009. Tuberculosis drug resistance mutation database. PLoS Med 6:e2. Bradley P, Gordon NC, Walker TM, Dun L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesar M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Igbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus</i> <i>aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Oje Elias C, Bradley P, Igbal Z, Feurriegel S, Niehaus	305		53:2230-7.
 Chatterjee A, Smith EG, Sanderson N, Walker TM, Morgan MR, Wyllie DH, Walker AS, Peto TEA, Crook DW, Iqbal Z. 2017. Same-day diagnostic and surveillance data for tuberculosis via whole genome sequencing of direct respiratory samples. J Clin Microbiol doi:https://doi.org/10.1128/JCM.02483-16. Votintseva AA, Pankhurst LJ, Anson LW, Morgan MR, Gascoyne-Binzi D, Walker TM, Quan TP, Wyllie DH, Del Ojo Elias C, Wilcox M, Walker AS, Peto TE, Crook DW. 2015. Mycobacterial DNA extraction for whole-genome sequencing from early positive liquid (MGIT) cultures. J Clin Microbiol 53:1137-43. Salamon H, Yamaguchi KD, Cirillo DM, Miotto P, Schito M, Posey J, Starks AM, Niemann S, Alland D, Hanna D, Aviles E, Perkins MD, Dolinger DL. 2015. Integration of published information into a resistance-associated mutation database for <i>Mycobacterium tuberculosis</i>. J Infect Dis 211 Suppl 2:S50-7. Endrullat C, Glokler J, Franke P, Frohme M. 2016. Standardization and quality management in next-generation sequencing. Appl Transl Genom 10:2-9. Muller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multidrug-resistant <i>Mycobacterium tuberculosis</i>. Trends Genet 29:160-9. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB. 2009. Tuberculosis drug resistance mutation database. PLoS Med 6:e2. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus</i> <i>aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbioloy Informatics Gro	306	14.	Votintseva AA, Bradley P, Pankhurst L, del Ojo Elias C, Loose M, Nilgiriwala K,
 AS, Peto TEA, Crook DW, Iqbal Z. 2017. Same-day diagnostic and surveillance data for tuberculosis via whole genome sequencing of direct respiratory samples. J Clin Microbiol doi:https://doi.org/10.1128/JCM.02483-16. Votintseva AA, Pankhurst LJ, Anson LW, Morgan MR, Gascoyne-Binzi D, Walker TM, Quan TP, Wyllie DH, Del Ojo Elias C, Wilcox M, Walker AS, Peto TE, Crook DW. 2015. Mycobacterial DNA extraction for whole-genome sequencing from early positive liquid (MGIT) cultures. J Clin Microbiol 53:1137-43. Salamon H, Yamaguchi KD, Cirillo DM, Miotto P, Schito M, Posey J, Starks AM, Niemann S, Alland D, Hanna D, Aviles E, Perkins MD, Dolinger DL. 2015. Integration of published information into a resistance-associated mutation database for <i>Mycobacterium tuberculosis</i>. J Infect Dis 211 Suppl 2:S50-7. Endrullat C, Glokler J, Franke P, Frohme M. 2016. Standardization and quality management in next-generation sequencing. Appl Transl Genom 10:2-9. Muller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multidrug-resistant <i>Mycobacterium tuberculosis</i>. Trends Genet 29:160-9. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB. 2009. Tuberculosis drug resistance mutation database. PLoS Med 6:c2. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Nichaus KE, Wilson DJ, Cliffon DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequee C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS	307		Chatterjee A, Smith EG, Sanderson N, Walker TM, Morgan MR, Wyllie DH, Walker
 for tuberculosis via whole genome sequencing of direct respiratory samples. J Clin Microbiol doi:https://doi.org/10.1128/JCM.02483-16. Votintseva AA, Pankhurst LJ, Anson LW, Morgan MR, Gascoyne-Binzi D, Walker TM, Quan TP, Wyllie DH, Del Ojo Elias C, Wilcox M, Walker AS, Peto TE, Crook DW. 2015. Mycobacterial DNA extraction for whole-genome sequencing from early positive liquid (MGIT) cultures. J Clin Microbiol 53:1137-43. Salamon H, Yamaguchi KD, Cirillo DM, Miotto P, Schito M, Posey J, Starks AM, Niemann S, Alland D, Hanna D, Aviles E, Perkins MD, Dolinger DL. 2015. Integration of published information into a resistance-associated mutation database for <i>Mycobacterium tuberculosis</i>. J Infect Dis 211 Suppl 2:S50-7. Endrullat C, Glokler J, Franke P, Frohme M. 2016. Standardization and quality management in next-generation sequencing. Appl Transl Genom 10:2-9. Muller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multidrug-resistant <i>Mycobacterium tuberculosis</i>. Trends Genet 29:160-9. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB. 2009. Tuberculosis drug resistance mutation database. PLoS Med 6:e2. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococccus aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatia G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequee C, Gaudin C, Parkhill J, Diel R, Suppl Y, P. Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics G	308		AS, Peto TEA, Crook DW, Igbal Z. 2017. Same-day diagnostic and surveillance data
 Mierobiol doi:https://doi.org/10.1128/JCM.02483-16. Votintseva AA, Pankhurst LJ, Anson LW, Morgan MR, Gascoyne-Binzi D, Walker TT, Quan TP, Wyllie DH, Del Ojo Elias C, Wilcox M, Walker AS, Peto TE, Crook DW. 2015. Mycobacterial DNA extraction for whole-genome sequencing from early positive liquid (MGIT) cultures. J Clin Microbiol 53:1137-43. Salamon H, Yamaguchi KD, Cirillo DM, Miotto P, Schito M, Posey J, Starks AM, Niemann S, Alland D, Hanna D, Aviles E, Perkins MD, Dolinger DL. 2015. Integration of published information into a resistance-associated mutation database for <i>Mycobacterium tuberculosis</i>. J Infect Dis 211 Suppl 2:S50-7. Endrullat C, Glokler J, Franke P, Frohme M. 2016. Standardization and quality management in next-generation sequencing. Appl Transl Genom 10:2-9. Muller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multidrug-resistant <i>Mycobacterium tuberculosis</i>. Trends Genet 29:160-9. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB. 2009. Tuberculosis drug resistance mutation database. PLoS Med 6:e2. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ispail A. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Comkum (5:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Igbal Z, Feurriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequee C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Melker AS, Imail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:11	309		for tuberculosis via whole genome sequencing of direct respiratory samples. J Clin
 Votintseva AA, Pankhurst LJ, Anson LW, Morgan MR, Gascoyne-Binzi D, Walker TM, Quan TP, Wyllie DH, Del Ojo Elias C, Wilcox M, Walker AS, Peto TE, Crook DW. 2015. Mycobacterial DNA extraction for whole-genome sequencing from early positive liquid (MGIT) cultures. J Clin Microbiol 53:1137-43. Salamon H, Yamaguchi KD, Cirillo DM, Miotto P, Schito M, Posey J, Starks AM, Niemann S, Alland D, Hanna D, Aviles E, Perkins MD, Dolinger DL. 2015. Integration of published information into a resistance-associated mutation database for <i>Mycobacterium tuberculosis</i>. J Infect Dis 211 Suppl 2:S50-7. Endrullat C, Glokler J, Franke P, Frohme M. 2016. Standardization and quality management in next-generation sequencing. Appl Transl Genom 10:2-9. Muller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multidrug-resistant <i>Mycobacterium tuberculosis</i>. Trends Genet 29:160-9. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB. 2009. Tuberculosis drug resistance mutation database. PLoS Med 6:e2. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequee C, Gaudin C, Parkhill J, Diel R, Supply P, Crook JW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. La	310		Microbiol doi:https://doi.org/10.1128/JCM.02483-16.
 TM, Quan TP, Wyllie DH, Del Ojo Elias C, Wilcox M, Walker AS, Peto TE, Crook DW. 2015. Mycobacterial DNA extraction for whole-genome sequencing from early positive liquid (MGIT) cultures. J Clin Microbiol 53:1137-43. Salamon H, Yamaguchi KD, Cirillo DM, Miotto P, Schito M, Posey J, Starks AM, Niemann S, Alland D, Hanna D, Aviles E, Perkins MD, Dolinger DL. 2015. Integration of published information into a resistance-associated mutation database for <i>Mycobacterium tuberculosis</i>. J Infect Dis 211 Suppl 2:S50-7. Endrullat C, Glokler J, Franke P, Frohme M. 2016. Standardization and quality management in next-generation sequencing. Appl Transl Genom 10:2-9. Muller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multidrug-resistant <i>Mycobacterium tuberculosis</i>. Trends Genet 29:160-9. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB. 2009. Tuberculosis drug resistance mutation database. PLoS Med 6:e2. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerrigel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, MeVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurrigel S, Nichaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> (mg ususceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Gu	311	15.	Votintseva AA, Pankhurst LJ, Anson LW, Morgan MR, Gascovne-Binzi D, Walker
 DW. 2015. Mycobacterial DNA extraction for whole-genome sequencing from early positive liquid (MGIT) cultures. J Clin Microbiol 53:1137-43. Salamon H, Yamaguchi KD, Cirillo DM, Miotto P, Schito M, Posey J, Starks AM, Niemann S, Alland D, Hanna D, Aviles E, Perkins MD, Dolinger DL. 2015. Integration of published information into a resistance-associated mutation database for <i>Mycobacterium tuberculosis</i>. J Infect Dis 211 Suppl 2:S50-7. Endrullat C, Glokler J, Franke P, Frohme M. 2016. Standardization and quality management in next-generation sequencing. Appl Transl Genom 10:2-9. Muller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multidrug-resistant <i>Mycobacterium tuberculosis</i>. Trends Genet 29:160-9. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB. 2009. Tuberculosis drug resistance mutation database. PLoS Med 6:e2. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, MeVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequee C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequenceing for prediction of <i>Mycobacterium tuberculosis</i> (Mug usceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A,	312	-	TM, Ouan TP, Wyllie DH, Del Oio Elias C, Wilcox M, Walker AS, Peto TE, Crook
 positive liquid (MGIT) cultures. J Clin Microbiol 53:1137-43. positive liquid (MGIT) cultures. J Clin Microbiol 53:1137-43. Salamon H, Yamaguchi KD, Cirillo DM, Miotto P, Schito M, Posey J, Starks AM, Niemann S, Alland D, Hanna D, Aviles E, Perkins MD, Dolinger DL. 2015. Integration of published information into a resistance-associated mutation database for <i>Mycobacterium tuberculosis</i>. J Infect Dis 211 Suppl 2:S50-7. Endrullat C, Glokler J, Franke P, Frohme M. 2016. Standardization and quality management in next-generation sequencing. Appl Transl Genom 10:2-9. Muller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multidrug-resistant <i>Mycobacterium tuberculosis</i>. Trends Genet 29:160-9. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB. 2009. Tuberculosis drug resistance mutation database. PLoS Med 6:e2. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Igbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Nichaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequee C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assunca JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Mi	313		DW. 2015. Mycobacterial DNA extraction for whole-genome sequencing from early
 Salamon H, Yamaguchi KD, Cirillo DM, Miotto P, Schito M, Posey J, Starks AM, Niemann S, Alland D, Hanna D, Aviles E, Perkins MD, Dolinger DL. 2015. Integration of published information into a resistance-associated mutation database for <i>Mycobacterium tuberculosis</i>. J Infect Dis 211 Suppl 2:S50-7. Endrullat C, Glokler J, Franke P, Frohme M. 2016. Standardization and quality management in next-generation sequencing. Appl Transl Genom 10:2-9. Muller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multidrug-resistant <i>Mycobacterium tuberculosis</i>. Trends Genet 29:160-9. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB. 2009. Tuberculosis drug resistance mutation database. PLoS Med 6:e2. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus</i> <i>aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Nichaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tu	314		positive liquid (MGIT) cultures. J Clin Microbiol 53:1137-43.
 Niemann S, Alland D, Hanna D, Aviles E, Perkins MD, Dolinger DL. 2015. Integration of published information into a resistance-associated mutation database for <i>Mycobacterium tuberculosis</i>. J Infect Dis 211 Suppl 2:S50-7. Endrullat C, Glokler J, Franke P, Frohme M. 2016. Standardization and quality management in next-generation sequencing. Appl Transl Genom 10:2-9. Muller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multidrug-resistant <i>Mycobacterium tuberculosis</i>. Trends Genet 29:160-9. Sandgren A, Strong M, Muthkrishnan P, Weiner BK, Church GM, Murray MB. 2009. Tuberculosis drug resistance mutation database. PLoS Med 6:e2. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Oje Elias C, Bradley P, Iqbal Z, Feurriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequencing data platform. Clin Infe	315	16.	Salamon H. Yamaguchi KD. Cirillo DM. Miotto P. Schito M. Posev J. Starks AM.
 Integration of published information into a resistance-associated mutation database for <i>Mycobacterium tuberculosis</i>. J Infect Dis 211 Suppl 2:S50-7. Endrullat C, Glokler J, Franke P, Frohme M. 2016. Standardization and quality management in next-generation sequencing. Appl Transl Genom 10:2-9. Muller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multidrug-resistant <i>Mycobacterium tuberculosis</i>. Trends Genet 29:160-9. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB. 2009. Tuberculosis drug resistance mutation database. PLoS Med 6:e2. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collabo	316	101	Niemann S. Alland D. Hanna D. Aviles E. Perkins MD. Dolinger DL. 2015.
 for <i>Mycobacterium tuberculosis</i>. J Infect Dis 211 Suppl 2:S50-7. Findrullat C, Glokler J, Franke P, Frohme M. 2016. Standardization and quality management in next-generation sequencing. Appl Transl Genom 10:2-9. Muller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multidrug-resistant <i>Mycobacterium tuberculosis</i>. Trends Genet 29:160-9. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB. 2009. Tuberculosis drug resistance mutation database. PLoS Med 6:e2. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Nichaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough	317		Integration of published information into a resistance-associated mutation database
 Endrullat C, Glokler J, Franke P, Frohme M. 2016. Standardization and quality management in next-generation sequencing. Appl Transl Genom 10:2-9. Muller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multidrug-resistant <i>Mycobacterium tuberculosis</i>. Trends Genet 29:160-9. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB. 2009. Tuberculosis drug resistance mutation database. PLoS Med 6:e2. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platf	318		for <i>Mycobacterium tuberculosis</i> . J Infect Dis 211 Suppl 2:S50-7.
 management in next-generation sequencing. Appl Transl Genom 10:2-9. Muller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multidrug-resistant <i>Mycobacterium tuberculosis</i>. Trends Genet 29:160-9. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB. 2009. Tuberculosis drug resistance mutation database. PLoS Med 6:e2. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Igbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhil J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Dozerbachez L, Enkrich T, Goraio Dzwiny L, Uktarak N, Uirozman L, Huer T. 	319	17	Endrullat C. Glokler I. Franke P. Frohme M. 2016. Standardization and quality
 Muller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multidrug-resistant <i>Mycobacterium tuberculosis</i>. Trends Genet 29:160-9. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB. 2009. Tuberculosis drug resistance mutation database. PLoS Med 6:e2. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A,	320	1,1	management in next-generation sequencing. Appl Transl Genom 10:2-9.
 multidrug-resistant <i>Mycobacterium tuberculosis</i>. Trends Genet 29:160-9. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB. 2009. Tuberculosis drug resistance mutation database. PLoS Med 6:e2. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus</i> <i>aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Sev	321	18	Muller B Borrell S Rose G Gagneux S 2013 The heterogeneous evolution of
 Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB. 2009. Tuberculosis drug resistance mutation database. PLoS Med 6:e2. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Dorehoedore L, Enkirkh T, Gorein Darving L,	322	10.	multidrug-resistant Mycobacterium tuberculosis Trends Genet 29:160-9
 20. Tuberculosis drug resistance mutation database. PLoS Med 6:e2. 20. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. 21. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Nichaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. 22. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. 24. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JF, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Dozerbackar L, Enkirkb T, Gorzio Davido L, Larcet N, Miarman A, Corer LD, Neurone J, Camino-Sanchez A, Carter LL, Dorarboxicar L, Enkirkb T, Gorzio Davido L, Larcet N, Miarman A, Carter LL, Dorarboxicar L, Enkirkb T, Gorzio Davido L, Larcet N, Miarman A, Carter LL, Dorarboxicar L, Enkirkb T, Gorzio Davido L, Larcet N, Camino-Sanchez A, Carter LL, Dorarboxicar L, Enkirkb T, Gorzio Da	323	19	Sandoren A Strong M Muthukrishnan P Weiner BK Church GM Murray MB
 Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus</i> <i>aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Doarboekot L, Enkirko H, Caerkin D, Wierrowan L, Warry T, Dearboekot L, Enkirko T, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Doarboekot L, Enkirko T, Gaving D, Wierrowan L, Warry T, 	324	17.	2009 Tuberculosis drug resistance mutation database. PLoS Med 6:e2
 LJ, Anson L, de Cesare M, Piazza P, Vointseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus</i> <i>aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Caberciz D, Camino-Sanchez A, Cartert LL, Doarbodyac L, Enkieh T, Can	325	20	Bradley P. Gordon NC. Walker TM. Dunn L. Heys S. Huang B. Earle S. Pankhurst
 DH, Diel R, Niemann S, Feurriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus</i> <i>aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. 21. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabereizo M, Camino-Sanchez A, Carter LL, Doarbodyca L, Enkiph T, Garagia Darivi L, Hatzat N, Winzer L, Lina T, 	326	20.	LI Anson L. de Cesare M. Piazza P. Votintseva AA. Golubchik T. Wilson DI. Wyllie
 Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus</i> <i>aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequencing data platform. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Dearbeacter L Enkirgh T, Grapia Darivel L Hatcalt N, Histrawan L, Halva T, 	327		DH Diel R Niemann S Feuerriegel S Kohl TA Ismail N Omar SV Smith EG
 antibiotic-resistance predictions from genome sequence data for <i>Staphylococcus</i> <i>aureus</i> and <i>Mycobacterium tuberculosis</i>. Nat Commun 6:10063. 21. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. 22. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Doartheayter L, Enkireh T, Gareio Derivel L, Hetralt N, Hinterneen L, Lyer 	328		Buck D McVean G Walker AS Peto TE Crook DW Johal Z 2015 Rapid
 aureus and Mycobacterium tuberculosis. Nat Commun 6:10063. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook Dw, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Doorrheelog L, Enciral L, Enciral L, Cornia Draine J, Hatron S, Miran T, Cornia D, Kim PT, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, 	329		antibiotic-resistance predictions from genome sequence data for <i>Stanhylococcus</i>
 21. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feurriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. 22. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51. 23. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. 24. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Doarnbackar L, Enkirab T, Gorzing D, Paring L, Harrat L, Winzmen L, Harra T, 	330		aureus and Mycobacterium tuberculosis Nat Commun 6:10063
 Feurriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, 	331	21	Walker TM Kohl TA Omar SV Hedge I Del Oio Elias C Bradley P Jobal Z
 Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook Drobniewski FA, Allix-Bequec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, 	332	21.	Feurriegel S Niehaus KE Wilson DI Clifton DA Kanatai G In CL Bowden R
 DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE, Modernizing Medical Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, 	333		Drobniewski FA Allix-Bequee C. Gaudin C. Parkhill I. Diel R. Supply P. Crook
 Microbiology Informatics Group. 2015. Whole-genome sequencing for prediction of <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Caberizo M, Camino-Sanchez A, Carter LL, Doarrebacker L, Enkirgh T, Garcia David L, Hatzelt N, Hilmmar A, Doarrebacker L, Enkirgh T, Garcia David L, Hatzelt N, Hilmmar T, Janna D, King T, Janna D, King D, Cabeza-Caberizo M, Camino-Sanchez A, Carter LL, 	334		DW. Smith EG. Walker AS. Ismail N. Niemann S. Peto TE. Modernizing Medical
 <i>Mycobacterium tuberculosis</i> drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193-1202. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, 	335		Microbiology Informatics Group 2015 Whole-genome sequencing for prediction of
 study. Lancet Infect Dis 15:1193-1202. 22. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51. 23. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. 24. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Caberizo M, Camino-Sanchez A, Carter LL, Doarrebacker L, Enkirgh T, Garcia Decival L, Hatralt N, Hinterson L, Halw, T 	336		Mycobacterium tuberculosis drug suscentibility and resistance: a retrospective cohort
 22. Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51. 23. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. 24. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Doarrebacker L, Enkirgh T, Garcia Doaival L, Hatralt N, Hillermann L, Halw, T 	337		study Lancet Infect Dis 15:1193-1202
 Mallard K, Nair M, Miranda A, Alves A, Perdigao J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Doarrhoekar L, Enkirgh T, Garcia Davida L, Hatralt N, Hingmann L, Halw T, 	338	22	Coll F McNerney R Preston MD Guerra-Assuncao IA Warry A Hill-Cawthorne G
 Hasan R, Glynn JR, Martin N, Pain A, Clark TG. 2015. Rapid determination of anti- tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Doarrhoeker L, Enkirgh T, Garcia Decival L, Hatralt N, History T. 	339	22.	Mallard K Nair M Miranda A Alves A Perdigao I Viveiros M Portugal I Hasan Z
 indian it, orymore, Mathematic, Panna P., Cham F.G. 2019. Taple determination of and tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51. Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Doarnbackar L, Enkirgh T, Garaia Davida L, Hatralt N, Historean L, Halw T. 	340		Hasan R Glynn IR Martin N Pain A Clark TG 2015 Rapid determination of anti-
 Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Dearthodear L, Enkirgh T, Garcia Deaival L, Hatrolt N, History T, T 	341		tuberculosis drug resistance from whole-genome sequences. Genome Med 7:51
 J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M. 2015. Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Dearrhocker L, Enkirgh T, Garaia Deaival L, Hatralt N, Hiarmann L, Halw T, 	342	23.	Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda
 effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Doarnbacker L, Enkirgh T, Garcia Dacival L, Hatrolt N, Histormann L, Halw T, 	343		J. Hanna D. Kim PS. Liwski R. Miotto P. Schito M. Zignol M. 2015. Collaborative
 Clin Infect Dis 61 Suppl 3:S141-6. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Dearthocker L, Enkirgh T, Carring Deaival L, Hatralt N, Histormann L, Halw, T 	344		effort for a centralized worldwide tuberculosis relational sequencing data platform.
 Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Dearribecker L, Enkirgh T, Carring Deaivel L, Hatrolt N, Hiermann L, Halw, T 	345		Clin Infect Dis 61 Suppl 3:S141-6.
 Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Doorrbocker L, Enkirgh T, Carcia Decival L, Hatrolt N, Hiermann L, Halw T, 	346	24.	Ouick J. Loman NJ. Duraffour S. Simpson JT. Severi E. Cowley L. Bore JA.
348 Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, 240 Deserbacker L Enkirgh T, Carria Desivel L Hatratt N, Histormann L Halve T	347	2	Koundouno R. Dudas G. Mikhail A. Quedraogo N. Afrough B. Bah A. Baum JH.
240 Doombookar I. Enkingh T. Capria Donival I. Hatralt N. Historian I. Haller T.	348		Becker-Ziaia B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL
J47 DOCHOCCKCI J. EHKIICH I. GAICIA-DOTIVALI. HELZEIL N. HINZMANN J. HOIM L.	349		Doerrbecker J, Enkirch T, Garcia-Dorival J, Hetzelt N, Hinzmann J, Holm T.
350 Kafetzopoulou LE, Koropogui M, Kosgev A, Kuisma E, Logue CH, Mazzarelli A.	350		Kafetzopoulou LE, Koropogui M, Kosgev A, Kuisma E, Logue CH, Mazzarelli A.
351 Meisel S, Mertens M, Michel J, Ngabo D, Nitzsche K, Pallasch E, Patrono LV.	351		Meisel S, Mertens M, Michel J, Ngabo D, Nitzsche K, Pallasch E, Patrono LV.
352 Portmann J, Repits JG, Rickett NY, Sachse A, Singethan K, Vitoriano I,	352		Portmann J, Repits JG, Rickett NY, Sachse A, Singethan K, Vitoriano I,

Real-time sequencing of TB: are we there yet?
Commissioned manuscript with tracking number JCM00358-17

353		Yemanaberhan RL, Zekeng EG, Racine T, Bello A, Sall AA, Faye O, Magassouba
354		N, Williams CV, Amburgey V, Winona L, Davis E, Gerlach J, Washington
355		F, Monteil V, Jourdain M, Bererd M, Camara A, Somlare H, Camara A, Gerard
356		M, Bado G, Baillet B, Delaune D, Nebie KY, Diarra A, Savane Y, Pallawo
357		RB, Gutierrez GJ, Milhano N, Roger I, Williams CJ, Yattara F, Lewandowski
358		K, Taylor J, Rachwal P, Turner DJ, Pollakis G, Hiscox JA, Matthews DA, O'Shea
359		MK, Johnston AM, Wilson D, Hutley E, Smit E, Di Caro A, Wölfel R, Stoecker
360		K, Fleischmann E, Gabriel M, Weller SA, Koivogui L, Diallo B, Keïta S, Rambaut
361		A, Formenty P, Günther S, Carroll MW. 2016. Real-time, portable genome
362		sequencing for Ebola surveillance. Nature 530:228-32.
363	25.	Lu H, Giordano F, Ning Z. 2016. Oxford Nanopore MinION sequencing and genome
364		assembly. Genomics Proteomics Bioinformatics 14:265-279.
365	26.	MacLean E, Huddart S, Pai, M. 2017. Molecular diagnosis of tuberculosis we need
366		solutions that span the healthcare value chain. Expert Rev Mol Diagn 17.
367	27.	Feuerriegel S, Schleusener V, Beckert P, Kohl TA, Miotto P, Cirillo DM, Cabibbe
368		AM, Niemann S, Fellenberg K. 2015. PhyResSE: a web tool delineating
369		Mycobacterium tuberculosis antibiotic resistance and lineage from whole-genome
370		sequencing data. J Clin Microbiol 53:1908-14.
371	28.	Sekizuka T, Yamashita A, Murase Y, Iwamoto T, Mitarai S, Kato S, Kuroda M. 2015.
372		TGS-TB: Total genotyping solution for Mycobacterium tuberculosis using short-read
373		whole-genome sequencing. PLoS One 10:e0142951.
374	29.	Steiner A, Stucki, D., Coscolla, M., Borrell, S. & Gagneux, S. 2014. KvarQ: targeted
375		and direct variant calling from fastq reads of bacterial genomes. BMC Genomics
376		15:881.
377	30.	Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, Ginsberg A,
378		Swaminathan S, Spigelman M, Getahun H, Menzies D, Raviglione M. 2016.
379		Tuberculosis. Nat Rev Dis Primers.
380		

Journal of Clinical Microbiology