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Tuberculosis (TB) is the leading infectious disease cause of death 
globally. Traditional TB diagnostic methods, such as culture or 
smear microscopy, are slow or low in sensitivity. Molecular 

techniques, such as GeneXpert MTB/RIF, are costly and often 
unavailable in primary-care settings because of their infrastructure 
needs. Providing high-quality patient-centred diagnostics and care 
when patients first present is critical to reaching the End-TB targets1. 
This should increase the number of TB cases detected and reduce 
patient losses at the initial stage of the care cascade2. New solutions 
are needed. The World Health Organization (WHO) defined the 
performance and operational characteristics of a test suitable for pri-
mary care or at the point of care (POC) in its high-priority target 
product profiles (TPPs)3 (Supplementary Methods).

Biomarkers are defined as ‘objective characteristics that indicate 
a normal or pathogenic biological process’4. An acceptable diagnos-
tic biomarker or multiple marker biosignature for TB would be a 
pathogen or host marker that is necessary and specific to the dis-
ease’s underlying process5. With TB, a necessary but not perfectly 
specific marker to support a rule-out or triage test is also a diag-
nostic need3.

To meet the TPPs, a biomarker test would ideally be instrument 
free or feasible with limited instrumentation and would utilize eas-
ily accessible samples, such as blood, urine or breath. Non-DNA-
based biomarker tests are more likely to meet the operational and 
cost targets of TPPs than are DNA-based tests. Although non-DNA 
biomarkers have the disadvantage of not providing information 
about drug susceptibility profiles, an easy-to-perform first test with-
out drug susceptibility testing capabilities is in line with the TPPs.

TB biomarkers research is an area of high activity, but its impact 
thus far has been limited. Except culture, the only WHO-endorsed 

tests for active TB detection are based on DNA detection in spu-
tum (Cepheid’s GeneXpert MTB/RIF, Eiken’s LAMP, and Hain and 
Nipro’s line probe assays) or are approved only for a limited use 
case (Abbott’s Determine TB-LAM lateral flow assay, which detects 
lipoarabinomannan (LAM) antigen in the urine for TB diagnosis in 
people living with human immunodeficiency virus (PLHIV) with 
CD4 counts < 100 cells per µl). Even for these approved tests, uptake 
and implementation have been slow6, which can partially be attrib-
uted to the tests not perfectly fitting the needed TPPs.

Systematic reviews of biomarkers, such as interferon-γ (IFN-γ)7–9,  
LAM10,11, antibody-based assays12 and incipient TB markers13 have 
already been published. Narrative reviews regarding the state of 
TB biomarkers research are available and informative, but do not  
present the full body of research5,14,15.

In this systematic review, we synthesize the published work on 
biomarkers and multiple biomarker biosignatures for the detection 
of active TB. Our primary objective is to capture the existing bio-
markers and evaluate the quality and level of evidence around them. 
Our secondary objective is to identify the most promising biomark-
ers and biomarker categories for the development of a POC test for 
standalone detection or triage for active TB.

Results
Results of the search. After deduplication, 4,470 publications were 
identified. Figure 1 illustrates the selection process. A total of 443 
publications were included in this review.

Most publications were excluded for not addressing the target 
condition of active TB detection. For example, many publications 
reported biomarkers for latent TB infection detection or were basic 
science studies. Furthermore, 308 studies that utilized IFN-γ release 
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assays for active TB or growth-based or imaging-based index tests 
were also excluded.

Characteristics and quality of included studies. Summarized 
results for study quality and risk of bias based on Quality Assessment 
of Diagnostic Accuracy Score 2 (QUADAS-2) questions are shown 
in Fig. 2, with full results for each study detailed in Supplementary 
Table 1. The risk of bias was high in most publications, primarily 
because of retrospective and case–control designs, lack of consecu-
tive sampling and use of controls that can inflate accuracy estimates.

Most studies (264 out of 443, 60%) sampled individuals in high TB 
burden countries as defined by the WHO16. The majority (70%) of 
publications reported results in adults, whereas demographic infor-
mation was not given in 16% of publications, 8% used mixed adult 
and paediatric patients, and 6% reported results solely in children.

Entries per biomarker category and analysis group. The 1,008 
biomarker entries from the 443 studies were classified into 12 pre-
defined biomarker categories of either host or mycobacterial ori-
gin, and then into 2 analysis groups (Fig. 3). Fewer than half (472 
out of 1,008) of the entries were classified into the α-group, which 
presumes a culture-based reference standard and diagnostic perfor-
mance data. Although most entries in the β-group utilized a culture-
based reference standard, many (448 out of 1,008) only reported P 
values for biomarker performance.

The majority (909 out of 1,008, 90%) of entries were host bio-
markers, with antibody and cytokine categories being dominant 
(Fig. 3). Only 10% (99 out of 1,008) of all entries were pathogen 
biomarkers; of those, 63% (62 out of 99) provided data suitable for 
analysis. The most frequently reported pathogen marker was LAM 
(35 entries, 34 in the α-group) (Fig. 3).

Study sizes varied greatly. Few biomarkers have been assayed 
using large sample sizes (28 entries ≥ 500 samples) and most were 
evaluated in relatively small samples (614 entries ≤ 100 samples).

Biomarkers with reported diagnostic performance. All α-group bio-
marker entries (472 out of 1,008) were plotted on a receiver operating  

characteristic (ROC) plot by category (Fig. 4a). Overall, the reported 
diagnostic performances generally show higher specificity, whereas 
sensitivity varies across a wider range. The selected negative control 
group was considered one of the most important sources of poten-
tial bias in diagnostic performance. Thus, Fig. 4b displays biomark-
ers that were assayed against a clinically relevant negative control 
population (other respiratory disease (ORD) for pulmonary TB, 
other diseases for extrapulmonary TB or either group for paediatric 
TB), leaving only 151 out of 472 (32%) biomarkers and biosigna-
tures. The antibody (54 out of 151, 36%) and cytokine and chemo-
kine (24 out of 151, 16%) groups remain the largest categories, with 
LAM (18 out of 151, 12%) remaining well represented. Host RNA 
(8 out of 151, 5%), mycobacterial other markers (5 out of 151, 3%) 
and volatile organic compounds (5 out of 151, 3%) also remain but 
in much smaller numbers.

Biomarkers that meet TPP diagnostic performance criteria. 
Forty-four entries from Fig. 4b met at least one TPP minimum per-
formance criteria (purple-shaded area, enlarged in Supplementary 
Fig. 2), the details of which are presented in Fig. 5. Thus, biomark-
ers included in Fig. 5 have been assayed against a clinically relevant 
negative control population and meet the minimum diagnostic per-
formance targets of the TPPs.

Overall, 24 of 44 (55%) entries in Fig. 5 were multiple marker 
biosignatures. Contrastingly, biosignatures comprised only 19% (187 
out of 1,008) of total entries, suggesting that biosignatures have bet-
ter potential to reach TPP performance targets. Ten (23%) markers 
were assessed for extrapulmonary TB detection. The majority (73%, 
32 out of 44) of entries shown in Fig. 5 were isolated from blood 
samples. The chosen study design of approximately half (52%, 23 out 
of 44) of entries in Fig. 5 was at low risk of bias, that is, cohort or 
cross-sectional. The remaining 48% of studies are still at relatively 
high risk of bias, although clinically relevant populations were used.

Host: antibody detection. Figure 5 includes 16 entries from the 
antibody class. Performance was notably high in three cohort stud-
ies: a study describing antibodies against the Mycobacterium tuber-
culosis protein A60 (ref. 17); an eight-antibody signature (anti-Ag85B, 
anti-Ag85A, anti-Ag85C, anti-Rv0934-P38, anti-Rv3881, anti-BfrB, 
anti-Rv3873 and anti-Rv2878c antibodies)18; and a seven-antibody 
signature (anti-BCG (Bacillus Calmette–Guérin) IgG, anti-LAM IgG, 
anti-TB15.3 IgG, anti-TB51a IgG, anti-10 kDa culture filtrate protein 
(CFP-10)/ESAT-6 IgG, anti-CFP IgG and anti-CW IgG)19. The remain-
ing antibody detection studies20–26 did not use a cohort study design.

Host: cytokines and chemokines, proteins and metabolic activ-
ity markers. All but 3 of the 16 entries were multiple marker bio-
signatures. One small, early-phase study showed promise for an 
eight-marker biosignature (granzyme A, growth/differentiation 
factor 15 (GDF15), serum amyloid A (SAA), interleukin-21 (IL-21),  
C-X-C motif chemokine 5 (CXCL5), IL-12(p40), IL-13 and plas-
minogen activator inhibitor-1) measured in the saliva27. In the 
blood, a seven-marker signature was described in a study at low 
risk of bias (C-reactive protein (CRP), transthyretin, IFN-γ, com-
plement factor H, apolipoprotein-A1, IFN-γ-induced protein 10 
(IP-10; also known as CXCL10) and SAA) with promising perfor-
mance for a triage test28. One study reported the biosignature of 
neural cell adhesion molecule, serum amyloid P, ferritin, comple-
ment factor H and extracellular matrix protein 1 (ECM-1) in the 
blood, as well as three promising six-marker biosignatures29. Plasma 
proteomic fingerprinting showed promise in an early-phase study 
to detect a combination of protein peaks between m/z 6,000 and 
m/z 12,000 (m/z represents the mass divided by the charge number 
in mass spectrometry)30. Monocyte chemotactic protein 1 (MCP-1;  
also known as CCL2)31 and several biosignatures32–35 detected in 
the blood showed promising performance, but must be further  

4,470 records screened after duplicates removed

7,631 records identified through database searching

3,126 excluded on the basis of title or abstract
2,220 target condition
175 animal
170 language
170 index test
323 epidemiological studies
34 review articles
34 conference proceedings

1,344 full-text articles assessed for eligibility

901 excluded full-text articles
375 target condition
1 language
138 index test
289 review articles
4 conference proceedings
67 size ≤30 samples per participant
27 no performance data

443 studies included describing: 
641 unique biomarkers or biomarker signatures
1,008 ‘biomarker entries’ 

Fig. 1 | PRISMA flow chart of publication selection.
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validated as the studies were small or at overall high risks of bias. With 
regards to more invasive samples, two studies reported promising 
performance for adenosine deaminase (ADA) for extrapulmonary  
TB detection in pleural fluid and cerebrospinal fluid36,37, and two 
studies detected host marker signatures in pleural fluid38,39.

Host: RNA. All RNA signatures were observed in the blood, includ-
ing a 44-transcript signature in a case–control study of 102 subjects 
in a validation cohort40; more compact transcriptional signatures of 

guanylate-binding protein 5 (GBP5) and CD64, as well as GBP5, 
high-affinity IgG Fc receptor I (FCGR1A) and granzyme A were 
observed in one study of 49 subjects41; and a signature of GBP5 
and Krueppel-like factor 2 (KLF2) was observed in a larger study  
of 353 participants42.

Host: haematological. IFN-γ+, tumour necrosis factor (TNF)+, 
CD4+ T cells in pleural fluid had promising performance in a small 
(n = 41) study of patients with pleural TB39.
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Fig. 2 | Summary of the results of QUADAS-2 assessment for the risk of bias to assess study quality. Answers to QUADAS-2 questions are given.  
The bar length is representative of the proportion of answers to each question. LTBI, latent TB infection; NA, not applicable; OD, other disease.

Pathogen

Host

Biomarker

LAM

Other antigens

RNA 

VOC

Other1

RNA

Other protein or metabolic marker

Blood cells or haematological

Cytokines or chemokines

Antibody

A
nt

ig
en

s

Mixed signatures3

P
ro

te
in

s

DNA2

150 100 50 0 50 100 150

Number of α entriesNumber of β entries

Excluded

Fig. 3 | Classification and number of entries per biomarker category and analysis group. In total, 1,008 biomarker entries from the set of 443 studies were 
included. α-Group entries were reported with sensitivity and specificity values and were evaluated against a culture-based reference standard, whereas β-group 
entries lacked either or both of these characteristics. 1Other pathogen markers include whole bacilli, M. tuberculosis metabolites and mycolic acids. 2Pathogen DNA 
biomarkers were excluded a priori (see the Methods section). 3Mixed signatures consist of biomarkers from multiple categories. VOC, volatile organic compound.

Nature MicrobioloGy | www.nature.com/naturemicrobiology

http://www.nature.com/naturemicrobiology


Analysis NaTure MIcrOBIOlOgy

Pathogen: LAM. One large, high-quality study43 reported LAM 
with high performance in immunocompromised HIV-positive 
patients with CD4 counts of <50 cells per µl, but performance in 
patients with higher CD4 counts did not reach the TPP criteria.

Pathogen: other antigen. An immunoassay detecting a non-char-
acterized M. tuberculosis antigen (smTB-Ag) with an unknown 
molecular weight was measured in a case–control study of 154 
patients22. CFP was identified in the blood using an agglutination 
test in a study with 638 participants44.

Pathogen: other markers. Four studies reported high accuracies 
for the detection of other pathogen biomarkers in sputum: two 
described whole M. tuberculosis bacilli detection45,46, one reported 
an unspecified mycolic acid using mass spectrometry but only 

included 44 subjects47, and one concerned a signature of mycolic 
acids, mycobacterial fatty acids and mycolic acids48.

Markers with limited performance. Entries that were assayed 
against clinically relevant control populations (Fig. 4b) but did not 
meet either of the TPP performance targets (unshaded area of Fig. 4b)  
are presented in Supplementary Table 2.

Briefly, 107 biomarker and biosignature entries from Fig. 4b did 
not reach TPP targets. Antibody markers represent 36% (38 out of 
107) of this group, including those generated against well-charac-
terized M. tuberculosis antigens, such as antigen A60, LAM, PstS1 
and 38 kDa protein22,49–52. Cytokines constituted 21% of this group 
(22 out of 107), with the majority being individual cytokines or che-
mokines (17 out of 22, 77%). Examples include CXCL11, CXCL9, 
IL-10, IP-10 and IFN-γ-containing signatures31,39,53–57. With respect 
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to host metabolic markers and other proteins, general inflammation 
markers, such as CRP, ADA, SAA and presepsin36,58–62, accounted for 
9% (11 out of 107). Most (8 out of 11, 80%) were assessed in cohort 
studies with a lower risk of selection bias. In the RNA category, a 
51-host transcript signature, complement component 1, C chain 
(C1qc) transcript, GBP5 and dual-specificity protein phosphatase 3 
(DUSP3) signature, and GBP5 did not reach TPP targets42,63,64.

The five multiple category signatures with sub-TPP tar-
get performance were CRP, ferritin, serum amyloid P, MCP-1,  
α-2-macroglobulin, fibrinogen and tissue plasminogen activator65; 
IL-1β, IL-23, ECM-1, hemofiltrate CC chemokine 1 (HCC1) and 
fibrinogen27; IFN-γ and ADA36; IP-10, IFN-γ, ferritin, SAA, CRP 

and antigen-stimulated IP-10 (ref. 58); and a CRP and anti-A60 anti-
body signature66. We identified a large study (n = 1,117) with low 
risk of bias that evaluated the use of CRP for active TB screening in 
consecutive PLHIV with CD4 counts of <350 cells per μl (Fig. 4b  
and Supplementary Table 2). Compared to culture-confirmed TB,  
CRP displayed a sensitivity of 0.89 and a specificity of 0.94, 
approaching the triage TPP minimum target67.

Mycobacterial antigen 85A had a low diagnostic performance68. 
Regarding LAM, all 17 high-quality studies showed its (already 
well-documented) low sensitivity. Five volatile organic compound 
entries had diagnostic performance below the TPP criteria69–72 and 
were taken from breath samples, except one measured in urine72.
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Fig. 5 | Details of the 44 entries that meet the TPP criteria in clinically relevant populations. Sample types that are not considered by the TPPs are 
marked with an asterisk (*). For simplicity, the host categories cytokines, other metabolic markers and mixed signatures have been condensed into one 
group. Ab, antibody; CSF, cerebrospinal fluid; LipC, lipase C; Mtb, M. tuberculosis; LTBI, latent TB infection.
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Discussion
Existing biomarkers research for TB thus far has yielded limited 
success. The present systematic review assesses the performance of 
biomarkers and biosignatures for active TB detection and appraises 
the quality of the studies.

Few ‘front-runners’ have been identified that could serve as the 
basis of a diagnostic test. The 44 biomarker and biosignature entries 
judged to be of higher quality with promising diagnostic perfor-
mance were mainly of host origin (37 out of 44, 84%) and included 
antibodies, cytokines and chemokines, and RNA signatures. Only 7 
of the 44 entrees were of mycobacterial origin, and only 2 (LAM and 
CFP) were from easily accessible urine or blood samples (Fig. 5).

Many studies, but limited or biased evidence. This review shows 
the considerable extent of activity in TB biomarker discovery, while 
highlighting some limitations of the field that at least partially 
explain the limited success; relatively few well-designed studies 
exist and even fewer studies are performed to validate previously 
discovered biomarkers. These limitations are present in biomarker 
research at large73: discovery studies are performed on insufficiently 
representative samples and similar efforts are repeated unnecessarily,  
without ‘nominating’ promising biomarkers to a further phase  
of validation74.

As the immunological processes of TB are complex, it is unsur-
prising that only a small fraction (44 out of 1,008) of identified 
biomarkers may be useful for disease detection; more troubling is 
that we were able to consider only a minority of entries (472 out 
of 1,008, 47%) for analysis. For example, owing to the absence of 
sensitivity and specificity estimates, 448 entries that solely reported 
P values were not analysed. This represents 35,897 patient samples 
and substantial research costs. Certainly, some entries were from 
exploratory studies whose objective was to identify new candidate 
biomarkers, but P values should not be considered adequate for 
decision-making regarding biomarker performance. The American 
Statistical Association warns that P values are often misused and 
misinterpreted, and often lead to irreproducible research findings. 
Thus, we strongly recommended compliance with STARD report-
ing guidelines and reporting of 2 × 2 tables, sensitivity and specific-
ity, and related confidence intervals75 (Table 1).

We found that most included studies are at high risk of bias and 
thus the reported biomarkers’ diagnostic performances may be 
inaccurate. Specifically, a large proportion of studies did not utilize 
a clinically relevant negative control population, employed a case–
control study design and sampled participants by convenience. 
Such design choices often lead to over-inflated diagnostic perfor-
mances76,77. This is consistent with conclusions from a previous 
systematic review of serological TB tests12. Again, we recommend 
consulting the widely established STARD tool when designing, 
planning and reporting studies to minimize study bias and clearly 
inform readers of limitations. Although restricted access to samples 
in the early discovery period might explain some of these findings, 
biorepositories that support such research do exist78,79.

Host biomarkers. Of the most promising host entries (Fig. 5), 24 out 
of 37 were biosignatures. It seems that multiple markers are typically 
required to reach TPP-level specificity, as diseases other than TB 
can influence circulating biomarker concentrations. Nevertheless, 
these host biosignatures primarily have potential for a triage test 
because specificity would not be high enough for a detection test.

Antibodies remain the most researched biomarker category, 
with 277 out of 1,008 entries (27%), probably because of their 
ease of translation into simple-to-use assays. However, only 16 
(Fig. 5) of all antibody biomarkers and biosignatures were of rela-
tively high quality and fulfilled TPP criteria, indicating their cur-
rent inaptness for TB diagnostic tests. Of these 16 entries, only 
three had a study design with a low risk of selection bias (Fig. 5). 

Anti-A60 IgG was measured in a cohort study using the Anda-TB 
assay17, but a previous meta-analysis clearly showed its insufficient 
accuracy12. A seven-antibody signature was reported in a valida-
tion study using the analytically complex antibodies in lymphocyte 
supernatant assay19. One recently recorded eight-marker signature 
was evaluated in a random subset of samples from a cohort study 
with promising results and further confirmation should be pur-
sued18. Overall, our findings mainly agree with previous work that 
antibody detection will probably not meet TPP criteria for active 
TB detection12,80 and there are several well-designed studies that 
confirm this (Supplementary Table 2). However, given the rap-
idly evolving understanding of the TB disease continuum, there 
may be a role for antibody-based markers of disease progression  
or reactivation81.

The host protein and metabolic markers are also a frequently 
observed category, probably because these proteins are easily mea-
sured by readily available commercial multiplex panels. For many 
studies, researchers used similar, commercially available multiplex 
inflammation marker panels, which results in the repeated probing 
of a limited range of markers. Unbiased approaches to biomarker 
identification, such as in proteomics, are very rarely taken.

We identified one noteworthy larger study with a low risk of 
bias reporting on a promising seven-host marker signature28. 
Interestingly, the best-performing marker in the seven-host marker 
signature is CRP28. However, the specificity of general inflamma-
tion markers, including CRP, is often low82. This is not surpris-
ing as they are upregulated during pro-inflammatory states83,84. In 
addition, baseline concentrations are higher in low socioeconomic 
populations85, and often people with TB are from such groups. 
Interestingly, a large study by Yoon and colleagues that evaluated 
CRP for active TB screening in PLHIV showed accuracy approach-
ing the TPP minimal target (Supplementary Table 2). Performance 
was better in PLHIV with CD4 counts of <200 cells per μl, suggest-
ing that, similar to urine LAM, it may be most useful as a test in 
severely ill PLHIV67. However, it remains unclear whether general 
inflammation markers will reach sufficient specificity to rule out 
disease in patients who present with TB-like symptoms86.

Most host RNA studies were published after 2014, indicating 
that this category is a growing area of discovery-phase research. 
It is driven by commercially available microarrays (for example, 
Illumina and Affymetrix) that facilitate unbiased, comprehensive 
gene expression analysis. There were four blood biosignatures  
(Fig. 5) that met the triage test TPP performance criteria in case–
control studies. Importantly, although measurement of transcript 
signatures on a portable platform (for example, Cepheid Omni) 
seems feasible, cost targets and operational characteristics of  
a triage test are unlikely to be met87. However, these assays could be 
considered for incipient and subclinical TB, for which there is a large  
market in high-resource settings that is less price sensitive81,88–91.  
This use case was beyond the scope of this study and has been  
discussed elsewhere92.

Going forwards, it seems clear that a multiplex assay will almost 
certainly be required to reach sufficient detection and triage test 
performance with host markers. However, the quantitative mea-
surement of several markers at clinically relevant concentrations on 
a simple, low-cost, multiplex POC platform will be a development 
hurdle to overcome (Table 1).

Pathogen biomarkers. In contrast to host markers, M. tuberculosis 
‘pathogen’ marker detection has the potential to be highly specific 
and useful for the development of detection tests for the purpose of 
initiating treatment (Supplementary Methods). Detection of patho-
gen DNA (excluded from this review) is the basis of the WHO-
endorsed PCR-based diagnostic tests, for example, Gene Xpert 
MTB/RIF93, but requires complex and expensive technology. From 
a POC test perspective, the detection of non-DNA M. tuberculosis 

Nature MicrobioloGy | www.nature.com/naturemicrobiology

http://www.nature.com/naturemicrobiology


AnalysisNaTure MIcrOBIOlOgy

Table 1 | Key findings and suggestions for further work

Topic area Key findings Suggestions for future research

Antibody 
category

- ��Largest number of biomarker entries
- ��Current evidence suggests that it is unlikely that a test on the basis 

of antibody detection that meets one of the TPPs can be developed
- ��Few prospective validation studies but many studies with case–

control design with non-relevant negative control groups

Assessment of antibodies as markers of TB disease progression

Cytokine or 
other proteins 
and metabolic 
marker 
categories

- ��Well-populated biomarker category
- ��Many single cytokines assayed
- ��Studies often use existing pre-established multiplex panels with 

known inflammation markers and there are few unbiased discovery 
efforts (such as proteomics) that aim to find new host markers

- ��Signatures are more promising than single markers, and signatures 
that meet the TPP triage performance criteria have been identified

- ��Specificity of general inflammation markers is expected to be lower 
in patients with other diseases

- ��The challenge is to transfer multiplex assays to simple, affordable 
POC platforms

- ��Study host marker signatures in different and relevant patient 
populations (that is, high-risk groups, such as PLHIV and patients with 
respiratory symptoms)

- ��Use a comprehensive reference standard that also detects 
extrapulmonary TB to avoid underdiagnosis

- ��Stop biased biomarker discovery using off-the-shelf cytokine panels 
that have previously been studied

Host RNA 
category

- ��Large proportion of this category is biosignatures
- ��Increasingly popular owing to the availability and decreasing cost of 

commercial transcriptomics platforms
- ��Probably more relevant for the triage use case owing to the 

expected moderate specificity
- ��Measuring these signatures at the target triage TPP cost (≤US$2 

per test) on a simple platform with currently available technology 
is not possible

- ��Validation and confirmation of identified signatures in clinically 
relevant populations (that is, by enrolling patients with  
presumptive TB)

- ��Development of targeted PCR assays and related platforms to measure 
the identified signatures at lower cost and closer to the patient

M. tuberculosis 
antigen or LAM 
categories

- ��Detection of M. tuberculosis pathogen markers will probably lead to 
tests with higher specificity than host markers

- ��M. tuberculosis DNA-based diagnosis is a success story (not part of 
this review) but is too costly and complex, therefore simple antigen 
detection has potential

- ��Very few ‘non-LAM’ studies, which suggests that the detection of 
antigens is difficult

- ��Few promising early-stage LAM studies suggest that LAM is 
present in general TB populations, including HIV-negative patients

- ��Existing assays detect antigen concentrations in the nanomolar 
range and might miss patients with lower analyte concentrations

- ��Development of high-affinity binding reagents to detect M. tuberculosis 
antigens

- ��Establish concentration ranges in easily accessible samples by using 
highly sensitive detection platforms

- ��Invest in sample preparation approaches and in the development of 
simple POC platforms that can detect antigens at concentrations of 
≤10 pM

Biosignatures - ��Out of all the entries in this review, 19% were biosignatures
- ��Of the best-performing entries, 55% were multiple marker 

biosignatures
- ��Biosignatures seem to have a greater chance to meet the accuracy 

targets but will be challenging to measure on simple POC platforms

- ��Fewer ‘one-marker’ studies and more collaborative efforts, such as the 
formation of study consortia to assess biomarkers more efficiently

- ��Use biobanks and distribute the same aliquots to several research 
groups working on different biomarkers so that biomarker results can 
be analysed in combination

Reporting - ��In many publications, it is difficult to find important information 
regarding study design and timing, patient recruitment and 
diagnostic performance

- ��Blinding is rarely specified

- ��Improved reporting is necessary
- ��Following STROBE, STARD or CONSORT checklists, as appropriate, will 

ensure critical information is included in publications
- ��A patient flow diagram, a table summarizing the characteristics of 

included patients, a 2 × 2 table showing index test performance versus 
the reference standard, ROC curves and a detailed description of included 
patients, including the reference standard used, are the absolute minimum

‘Discovery’ 
studies versus 
‘validation and 
confirmation’ 
studies

- ��Many biomarkers have been reported numerous times in case–
control studies using selected patients with TB and healthy controls

- ��Researchers often rely on poorly characterized specimen from non-
relevant patient populations

- ��The performance of many biomarkers is measured only with  
a P value and studies are often underpowered

-�Discovery studies often overemphasize the significance of novel 
biomarker candidates, and efforts to confirm or validate markers in 
continuation with previous research are rare

- ��Consult the literature to avoid repeatedly ‘discovering’ biomarkers that 
have already been documented

- ��Consult http://www.bm2dx.org
- ��Use well-characterized samples and reference materials from well-

established biobanks (for example, https://www.finddx.org/specimen-
banks/ or https://www.tbbiorepository.org/)

- ��Increase the number of follow-up studies of biomarkers that 
demonstrated promising performance in discovery studies

- ��Utilize prospective study designs and blinding to lower the risk of bias, 
and enrol diverse and clinically relevant patient populations

- ��Use a comprehensive, culture-based reference standard

TPPs - ��Few studies use TPP targets as guiding principles - ��Consult the WHO-endorsed TPPs (see Supplementary Methods and 
https://www.who.int/tb/publications/tpp_report/en/) during the 
design and analysis phases of studies to focus research and move 
towards the development of clinically useful tests

- ��Benchmark results against TPP targets
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biomarkers is probably simpler. Despite the potential of this cate-
gory, we found very few studies of M. tuberculosis antigen markers. 
LAM is the M. tuberculosis antigen with the strongest evidence in 
our review (Fig. 3). However, our results confirm the already well-
documented94 low sensitivity of urinary LAM detection methods in 
patients other than severely immunocompromised PLHIV (Fig. 4b).  
Recently, three studies95–97 showed improved clinical sensitivity 
when using innovative assays. These results suggest that improved 
assay methods and reagents for LAM detection lead to increased 
clinical accuracy. However, all three studies need to be further con-
firmed, and sophisticated assay protocols need to be translated into 
a POC format to reach TPPs. Currently available POC platforms for 
antigen detection cannot detect antigen concentrations in the low 
picomolar range. For future diagnostic development using antigen 
detection, researchers should consider (1) investing in the genera-
tion of high-affinity binding reagents with well-understood epitope 
specificity to M. tuberculosis antigens; (2) using sensitive detection 
platforms to establish antigen concentration ranges in urine and 
blood specimens; and (3) supporting the development of simple 
POC platforms with a low limit of detection.

Strengths of the study. This systematic review, with over 400 
included studies, has several strengths. The search strategy was rigor-
ously validated. Clear inclusion and exclusion criteria were decided 
a priori by all authors and were simple to apply during screening. 
QUADAS-2, a recognized and validated tool, was applied for quality 
assessment of all included publications. There were no restrictions 
on patient populations that were eligible for inclusion in this review; 
consequently, the list of biomarkers and biosignatures generated is 
comprehensive with respect to pulmonary and extrapulmonary TB, 
in adults and children, regardless of HIV or comorbidity status.

Limitations of the study. Owing to the high number of publica-
tions, we focused this review on biomarkers for the detection of 
active TB. However, the distinction between latent infection and 
active disease is not dichotomous as previously postulated88, and 
future reviews could be extended to include markers of disease pro-
gression. No formal assessment of publication bias was performed, 
as existing methods are not helpful for diagnostic accuracy stud-
ies98. The time frame was limited to 2010–2017; although this may 
have led to excluding promising biomarkers only reported before 
this window, we are not aware of any critical misses and confirmed 
this using selected previously published biomarker reviews5,14. As 
we only used six relevant QUADAS-2 questions to evaluate each 
study, we could have missed other biases that were not covered by 
our questions.

Suggestions and future directions. Based on our observations 
throughout the screening, data extraction and data analysis pro-
cesses, we have made various key suggestions for future research 
in Table 1.

The findings from this systematic review are being used as the 
foundation for a dynamic TB biomarkers database, Bm2Dx.org, 
developed by FIND74. Recognizing that much research in the field 
is repetitive and therefore somewhat wasteful, the database aims to 
amplify research impact by facilitating follow-up and validation of 
identified biomarkers, encouraging research with good reporting 
and a low potential for bias, and catalysing the formation of research 
consortia, such as the AE-TBC or the RePORT International 
Coordinating Center99. The FIND sample bank and clinical trials 
platform will be linked to Bm2Dx, enabling good discovery-level 
research and biomarker confirmation and validation.

Conclusion
The amount of interest in biomarkers and biosignatures for TB 
detection is encouraging. However, as only a small proportion of 

markers is assayed in a clinically relevant manner, progress towards 
a clinically useful POC test has been slow. We expect this situation 
to change over the next few years as researchers start to investigate 
biomarkers in relation to the WHO TPPs and design studies for spe-
cific use cases, with more targeted efforts into high-quality follow-
up studies. A comprehensive and systematically updated biomarker 
pipeline, such as that available at Bm2Dx.org, will accelerate the 
process and help to focus limited resources.

Methods
We conducted a systematic review of non-DNA biomarkers for the diagnosis of 
active TB in accordance with PRISMA standards (see the PRISMA checklist in 
Supplementary Methods).

Data sources and search strategy. We searched the academic databases PubMed, 
EMBASE and Web of Science. Publications were limited to those published 
between 2010 and 2017 to focus on recent evidence in a rapidly evolving field, 
written in English and concerning human participants or banked human samples. 
In the case of PubMed, searches including both medical subject headings (MeSH) 
and ‘text words’ were used. In PubMed, the ‘English’ filter was not used. For 
EMBASE and Web of Science, ‘English’ and ‘Human’ filters were used. The search 
term was transposed to fit the parameters of each database (Supplementary 
Methods). The Cochrane Library of Systematic Reviews was searched using the 
term ‘tuberculosis AND biomarker’ as title, abstract or keyword entries, without 
other filters. An ‘up-and-down’ approach was used to search reviews. Citations 
identified from reviews were included for further screening. Authors were 
contacted when relevant for missing diagnostic performance data. Neither patent 
databases nor the grey literature were searched.

Eligibility criteria. Time period. Studies published from 1 January 2010 to 31 
December 2017 in English were included to focus on current research in the field, 
recent methods and to contain the number of studies.

Biomarker types, index tests and sample type. Studies focusing on individual 
biomarkers or multiple marker biosignatures of host or Mycobacterial origin 
were included. Studies assessing the performance of a culture-based index test or 
using imaging-based detection methods (for example, chest X-ray, microscopy 
or PET-CT, among others) were excluded, as these tests were not considered 
suitable for translation into a test to fit the WHO TPPs or have been reviewed 
elsewhere100. Studies reporting on DNA biomarkers, including cell-free DNA, 
were also excluded, as comprehensive reviews of Xpert MTB/RIF101, TB-LAMP102 
and line probe assays103 have already been published. Furthermore, studies 
investigating IFN-γ release assays for active TB detection were excluded owing to 
existing systematic reviews104. Studies that did not report statistical significance or 
quantitative diagnostic measures (that is, sensitivity and specificity, or area under 
the curve) of the biomarker’s diagnostic performance were excluded. Although 
the focus of the TPPs is easily accessible samples (such as urine, blood, saliva or 
exhaled air)3, the sample type was not used as an eligibility criteria, and studies 
measuring biomarkers in other, less accessible sample types were included as the 
detection of a biomarker in these sample types can indicate its presence in more 
accessible sample types.

Study population. There were no exclusion criteria regarding patient characteristics. 
Sample size calculations suggest that a solid assessment of biomarker performance 
should include at least 100 TB-positive and 100 non-TB participants. However, to 
minimize the risk of excluding promising early-stage research studies, we decided 
to use a less-stringent inclusion cut-off and included studies with >30 human 
participants or samples from >30 individuals in total. There were no criteria for 
the number of participants per group, but studies that included small sample sizes 
may not be adequately representative of the diversity of patient populations.

Study types. Studies of any design (that is, cohort, case–control and cross-sectional 
studies or trials) were considered, independent of whether testing was performed 
on fresh samples in prospective studies or retrospectively on frozen or biobanked 
samples. Conference proceedings and abstracts were excluded.

Screening and data extraction. Study screening and selection. All publications 
captured by the search were collected in Endnote. After removing duplicates, 
publications were screened by title and abstract by one reviewer (E.M.) before 
full-text screening. A second reviewer (T.B.) screened any studies whose 
appropriateness for inclusion was not immediately obvious.

Data extraction. A Google form was piloted for data extraction and tested with a 
subgroup of eligible publications before being finalized for use. From each selected 
publication, information was collected in a standardized manner by one author 
(either E.M. or B.L.F.-C.) using the form. A list of the fields for data extraction 
is included in Supplementary Methods. Independent double data entry was 
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completed for 5% of publications (S.Y., T.B. and E.M.). In instances when a field 
was unclear (for example, study timing, study design and/or control group), the 
reviewers conferred to reach consensus. Agreement on extraction results between 
authors was excellent.

Data quality control and validation. Data quality control was performed by two 
independent reviewers (T.B. and S.Y.). Details of the quality control protocol are 
described in Supplementary Methods. For all entries, study design, study timing 
and biomarker category were independently verified by a second reviewer (T.B.). 
Data permitting, sensitivity and specificity were recalculated based on 2 × 2 tables 
and compared to reported values. We used Wilson’s method for estimating the 
credible 95% confidence interval as this method performs well even when the 
probability or the sample size is small105. In the case of papers that only reported 
area under the curves or ROC curves without sensitivity, specificity or 2 × 2 table 
values, authors were contacted for relevant data.

Assessment of quality and risk of bias of individual studies. All included studies 
were subject to a quality and bias assessment consisting of six selected questions 
from the QUADAS-2 tool106 (Supplementary Methods). The selected questions 
represent the four domains of QUADAS-2 to assess the risk of bias of studies. As 
per QUADAS-2 guideline, the selected questions were those deemed most relevant 
for identifying biases for those studies included in the review. Items were scored as 
‘yes’, ‘no’ or ‘unclear’.

Data synthesis and analysis approach. Data were synthesized and analysed using 
Excel (Microsoft) and MATLAB (MathWorks) to evaluate the level and quality 
of evidence for biomarker categories and individual biomarkers. TB diagnostic 
experts were consulted to develop an analysis approach. Biomarkers that were 
assayed using a culture-based reference standard and included diagnostic 
sensitivity and specificity or epidemiological 2 × 2 tables were included in analysis 
group α. Those biomarkers that did not fulfil these two criteria were classified 
into analysis group β and were not considered for any further analysis. Because we 
expected substantial heterogeneity in markers, design, quality and results, no meta-
analysis was planned.

Biomarker entry. A biomarker entry was defined as a unique biomarker or a 
biosignature (composed of several biomarkers) with performance data. Many 
eligible publications reported diagnostic performance for more than one 
biomarker, leading to several biomarker entries per publication. All biomarker 
entries were categorized into one of two analysis groups (Supplementary Fig. 1).

Negative control groups. In some publications, biomarker performance was 
reported separately for more than one non-TB control group. According to the 
TPPs, biomarker-based tests must be assayed in clinically relevant populations, 
that is, in populations representative of those who would present to a routine 
health-care setting with a clinical presentation similar to that of TB (for example, 
due to ORD or other systemic diseases, as in the case of extrapulmonary TB). We 
followed the example of Steingart et al.107 and preferentially extracted data for the 
negative control group with the highest clinical relevance in the following order 
(most to least relevant): (1) patients who were initially suspected of having TB, but 
who ultimately were diagnosed with ORD; (2) patients enrolled with known ORD; 
(3) patients enrolled with other diseases; (4) patients with latent TB infection; 
(5) individuals without clinical symptoms who had contact with a patient with TB; 
(6) healthy individuals from endemic countries; and (7) healthy individuals from 
non-endemic countries. For paediatric or extrapulmonary patients, the preferential 
control group was either other diseases or ORD. In summary, when studies 
presented a biomarker’s performance using multiple negative control groups, data 
for the most relevant group were used.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available on www.Bm2Dx.org 
and are available from the corresponding author on request. A complete list of the 
included studies is provided in Supplementary Table 1.
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Sample size This is a systematic review and sample size of included studies are reported in detail.

Data exclusions Eligibility and exclusion criteria for this systematic review are described in detail in the methods section: 
 
Time Period 
Studies published from 1 January 2010 to 31 December 2017 in English were included to focus on current research in the field, recent 
methods, and to contain the number of studies. 
 
Biomarker types, index tests, and sample type 
Studies focusing on individual biomarkers or multi-marker biosignatures of host or Mycobacterial origin were included. Studies assessing the 
performance of a culture-based index test, or using imaging-based detection methods (e.g. chest X-ray, microscopy, PET-CT, etc.) were 
excluded as these tests were not considered suitable for translation into a test to fit the WHO TPPs or have been reviewed elsewhere. Studies 
reporting on DNA biomarkers, including cell-free DNA, were also excluded, as comprehensive reviews of Xpert MTB/RIF, TB-LAMP, and line 
probe assays have already been published. Further, studies investigating IGRAs for active TB detection were excluded due to existing 
systematic reviews. Studies that did not report statistical significance or quantitative diagnostic measures (i.e. sensitivity and specificity, or 
AUC) of the biomarker’s diagnostic performance were excluded. Although the focus of the TPPs are easily accessible samples (such as urine, 
blood, saliva, or exhaled air), the sample type was not used as an eligibility criteria and studies measuring biomarkers in other, less accessible 
sample types were included since the detection of a biomarker in these sample types can indicate its presence in more accessible sample 
types. 
 
Study population 
There were no exclusion criteria regarding patient characteristics. Sample size calculations suggest that a solid assessment of biomarker 
performance should include at least 100 TB positive and 100 Non-TB participants. However, to minimize the risk of excluding promising early-
stage research studies we decided to use a less-stringent inclusion cut-off and included studies with more than 30 human participants or 
samples from more than 30 individuals in total. There were no criteria for number of participants per group, but studies that included small 
sample sizes may not be adequately representative of the diversity of patient populations. 
Study types  
Studies of any design (i.e. cohort, case-control, cross-sectional studies, or trials) were considered, independent of whether testing was 
performed on fresh samples in prospective studies or retrospectively on frozen or biobanked samples. Conference proceedings and abstracts 
were excluded. 

Replication We followed "Preferred Reporting Items for Systematic Reviews and Meta-Analyses" (PRISMA) guidelines and attached the PRISMA-Checklist 
in the Supplementary Methods (including search term). This ensures that findings can be reproduced. Independent double data entry was 
completed for 5% of publications to ensure consistency and that findings can be replicated.

Randomization Randomization is not relevant for this systematic review.

Blinding Blinding is not relevant for this systematic review.
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